
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

1 Daniel Llamocca

Custom Peripheral for the AXI4-Lite Interface

OBJECTIVES
▪ Create a Hardware/Software System using the ZYBO Board or the ZYBO Z7-10 Board.
▪ Create custom VHDL peripherals with an AXI4-Lite Interface.
▪ Integrate a VHDL peripheral in a Block Based Design in Vivado 2019.1.
▪ Create a software application in SDK that can transfer data from/to the custom peripheral.

ZYBO/ZYBO Z7-10 BOARD SETUP FOR HARDWARE/SOFTWARE CO-DESIGN

▪ It is assumed that the definition files (available in vivado-boards-mastes.zip) have been installed in Vivado.

▪ ZYBO: PS_CLK input: 50 MHz. PL_CLK input: 125 MHz. By default, a 100 MHz is generated for the PL fabric.
▪ ZYBO Z7-10: PS_CLK input: 33.33 MHz. PL_CLK input: 125 MHz. By default, a 50 MHz clock is generated for the PL fabric.

▪ Refer to the Zynq Book Tutorial: IP Creation → Creating IP in VHDL for detailed step-by-step instructions on how to

integrate a custom hardware in Vivado.

PIXEL PROCESSOR: CUSTOM PERIPHERAL FOR AXI4-LITE INTERFACE

CONSIDERATIONS
▪ We will use the Pixel Processor with 𝑁𝐶 = 4,𝑁𝐼 = 𝑁𝑂 = 8, 𝐹 = 1.

▪ List of files to use:
✓ mypix_v1_0.vhd: AXI4-Lite peripheral (top file, Vivado template)

✓ mypix_v1_0_S00_AXI.vhd: AXI4-Lite interface description (edited Vivado template)

✓ static_ip.vhd: Pixel Processor IP with connection to the Slave Registers.

✓ LUT_group.vhd: Top file of the Pixel Processor IP

✓ LUT_NItoNO.vhd, LUT_NIto1.vhd, pack_xtras.vhd: Other files that make up the Pixel Processor.

✓ LUT_values8to8.txt: LUT values in a text file.

✓ tb_mypixAXI4Lite.vhd: Testbench for AXI4-Lite peripheral. This is very useful as it emulates the AXI signals resulting

from the execution of the software in the PS. This allows us to fix peripheral errors.

▪ We need two Slave Registers to process data through this Pixel Processor circuit (one for writing data, one for reading data).

IP GENERATION
▪ Create a new project in Vivado: myaxilitepix.

✓ Make sure the default language is VHDL, so that the system wrapper and template files are created in VHDL

✓ At Default Part, go to Boards, and select the Zybo (or Zybo Z7-10) Board.

▪ From the menu bar, select Tools → Create and Package New IP.

= 00

LUT
8-to-8

LUT
8-to-8

LUT
8-to-8

upix_ip

LUT
8-to-8

Slave
Register 0

Slave
Register 1

E E

sl
v
_
re

g
_
w

re
n

a
x
i_

a
w

a
d
d
r(

3
..

2
)

= 01

sl
v
_
re

g
_
rd

e
n

a
x
i_

a
ra

d
d
r(

3
..

2
)

S_AXI_AWADDR

S_AXI_AWVALID

S_AXI_AWREADY

S_AXI_WDATA

S_AXI_WSTRB

S_AXI_WVALID

S_AXI_WREADY

S_AXI_BRESP

S_AXI_BVALID

S_AXI_BREADY

4

32

4

2

S_AXI_ACLK

S_AXI_ARESETN

S_AXI_ARADDR

S_AXI_ARVALID

S_AXI_ARREADY

S_AXI_RDATA

S_AXI_RRESP

S_AXI_RVALID

S_AXI_RREADY

4

32

static_ip.vhd

http://www.secs.oakland.edu/~llamocca/dig_library/arith/pix_proc.zip

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

2 Daniel Llamocca

✓ Create a new AXI4 Peripheral. Name: mypix. Location /ip_repo.

Peripheral Repositories tip: To add a previously-generated IP into a new project, go to: Project Settings → IP → IP

repositories and point to the associated repository folder.

✓ Add Interface: Lite, 32 bits, 4 registers (we just need 2, but 4 is the minimum).
✓ Select Edit IP. A New project appears, open it and look for the <peripheral name>_S00_AXI.vhd file (in this case it will

be mypix_v1_0_S00_AXI.vhd). Modify the project by:

 Using only the required registers, i.e., commenting out VHDL code that specifies unused registers and instantiating
(port-map) the pixel processor IP in the file mypix_v1_0_S00_AXI.vhd. As a shortcut, you can just replace this file

with the file mypix_v1_0_S00_AXI.vhd file that is available for download.

 Adding the extra files to the folder /hdl in /ip_repo/mypix_1.0 and adding these source files (including the .txt file)

to the Vivado project. * Vivado 2019.1: by default, the files will be added to the folder /src.

✓ There is no need to add ports as our peripheral does not include external I/Os.
✓ Synthesize your circuit (just to double-check everything is ok): You should’ve simulated this code in a different project.

✓ The following instructions are detailed in the Zynq Book Tutorial: IP → Creating IP in VHDL (Return to IP Packager,

Review and Package):

 Go to Package IP - mypix: Identify areas that need refresh. In this project, we only added files, so click on File

Groups. Then click on Merge changes from File Group Wizard.

 Go to Review and Package → Edit packaging settings: Check Create archive of IP, Close IP Packager Window, Add

IP to the IP Catalog in the current project (don’t check Delete project after Packaging). Then, click on Re-Package IP.

▪ Your custom IP is now ready to be used as an AXI4-Lite Peripheral.
▪ You will return to the original Vivado Project.

CREATING A BLOCK DESIGN PROJECT IN VIVADO

▪ Click on Create Block Design and instantiate the Zynq PS and the AXI MYPIX peripheral.

▪ Click on Run Block Automation and Run Connection Automation. Then ‘Validate Design’

▪ There is no need to add an .xdc file as our peripheral does not use external ports.

▪ Create the VHDL wrapper (Sources Window → right click on the top-level system design → Create HDL Wrapper).

▪ Synthesize, implement, and generate the bitstream.
✓ An error will be reported when Synthesizing. Vivado only copies VHDL files from the IP folder to the embedded project

folder (located inside the /<peripheral name>.srcs/…/ipshared folder). As a result, the LUT_NItoNO.vhd file cannot

find the LUT_values.txt. We need to place this text file in the same folder as the LUT_NItoNO.vhd file.

✓ This folder location is available by opening the LUT_NItoNO.vhd file. You need to find this file in the design structure or

via the Vivado error which will point to the LUT_NItoNO.vhd file. After copying the .txt file, you can Synthesize again.

✓ In general, this procedure is to be followed for any ancillary file (e.g. text file) used by the VHDL files.
▪ Export hardware (with bitstream) and launch SDK

SOFTWARE APPLICATION IN SDK
▪ Use Tutorial Unit 2 for instructions on how to create and test a software application on SDK.
▪ Navigate to Xilinx Tools → Repositories, click on ‘New’ and then browse to the folder \ip_repo\mypix_1.0 and click ok.

▪ Create a new SDK application: pixtest. Then, copy the following file into the /src folder: pixproc_test.c. This file will

test all the possible inputs to each 8-bit LUT (0x00 to 0xFF): The 32-bit input word will have four identical bytes. Example:

✓ Input = 0x01010101, Expected Result = 0x10101010

✓ Input = 0x03030303, Expected Result = 0x1C1C1C1C

✓ Input = 0xFDFDFDFD, Expected Result = 0xFEFEFEFE

PIPELINED DIVIDER: CUSTOM PERIPHERAL FOR AXI4-LITE

CONSIDERATIONS
▪ We will use the Pipelined Integer Divider with 𝑁 = 16,𝑀 = 16.

▪ List of files to use:
✓ mydiv_v1_0.vhd: AXI4-Lite peripheral (top file). This is the same file generated by Vivado.

✓ mydiv_v1_0_S00_AXI.vhd: AXI4-Lite Interface description. This file is generated by Vivado, but it has been edited to

include the Pipelined Divider IP (divpip_ip.vhd).

✓ divpip_ip.vhd: Pipelined Divider with some interfacing (FSM) to the Slave Registers for AXI4-Lite Interfacing.

✓ res_div_pip.vhd: Top file of the Pipelined Divider IP.

✓ fulladd.vhd, my_pashiftreg.vhd, unit_proc.vhd, dffe.vhd: Other files that make up the Pipelined Divider.

✓ tb_mydivAXI4Lite.vhd: Testbench for AXI4-Lite peripheral. This is very useful as it emulates the AXI signals resulting

from the execution of the software in the PS. This allows us to fix peripheral errors.
▪ We need 3 Slave Registers to process data through this Pipelined Divider circuit (one for writing data, two for reading data).

http://www.secs.oakland.edu/~llamocca/dig_library/arith/rest_integer_div.zip

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

3 Daniel Llamocca

IP GENERATION
▪ Create a new project in Vivado: myaxilitediv.

✓ Make sure the default language is VHDL, so that the system wrapper is created in VHDL

✓ At Default Part, go to Boards, and select the Zybo (or Zybo Z7-10) Board.

▪ From the menu bar, select Tools → Create and Package New IP.
✓ Create a new AXI4 Peripheral. Name: mydiv. Location /ip_repo.

Peripheral Repositories tip: To add a previously-generated IP into a new project, go to: Project Settings → IP → IP

repositories and point to the associated repository folder.

✓ Add Interface: Lite, 32 bits, 4 registers (we just need 3, but 4 is the minimum).
✓ Select Edit IP. A New project appears, open it and look for the <peripheral name>_S00_AXI.vhd file (in this case it will

be mydiv_v1_0_S00_AXI.vhd). Modify the project by:

 Using only the required registers, i.e., commenting out VHDL code that specifies unused registers and instantiating
(port-map) the pipelined divider IP in the file mydiv_v1_0_S00_AXI.vhd. As a shortcut, you can just replace this file

with the file mydiv_v1_0_S00_AXI.vhd file that is available for download.

 Adding the extra files to the folder /hdl in /ip_repo/mydiv_1.0 and adding these source files to the Vivado project.

* Vivado 2019.1: by default, the files will be added to the folder /src.

✓ There is no need to add ports as our peripheral does not include external I/Os.

✓ Synthesize your circuit (just to double-check everything is ok): You should’ve simulated this code in a different project.

✓ Go to Package IP – mydiv -→ File Groups (Merge changes). Then Review and Package → Re-Package IP.

▪ Your custom IP is now ready to be used as an AXI4-Lite Peripheral.
▪ You will return to the original Vivado Project.

CREATING A BLOCK DESIGN PROJECT IN VIVADO

▪ Click on Create Block Design and instantiate the Zynq PS and the AXI MYDIV peripheral.

▪ Click on Run Block Automation and Run Connection Automation. Then ‘Validate Design’

▪ There is no need to add an .xdc file as our peripheral does not use external ports.

▪ Create the VHDL wrapper (Sources Window → right click on the top-level system design → Create HDL Wrapper).

▪ Synthesize, implement, and generate the bitstream.
▪ Export hardware (with bitstream) and launch SDK

SOFTWARE APPLICATION IN SDK
▪ Navigate to Xilinx Tools → Repositories, click on ‘New’ and then browse to the folder \ip_repo\mydiv_1.0 and click ok.

▪ Create a new SDK application: divtest. Then, copy the following file into the /src folder: div_test.c. This file will test

three integer divisions:
✓ A = 0x008C, B = 0x0009. Expected Result: Q = 0x000F, R = 0x0005.

✓ A = 0x00BB, B = 0x000A. Expected Result: Q = 0x0012, R = 0x0007.

✓ A = 0x0FEA, B = 0x0371. Expected Result: Q = 0x0004, R = 0x0226.

= 00

S_AXI_AWADDR

S_AXI_AWVALID

S_AXI_AWREADY

S_AXI_WDATA

S_AXI_WSTRB

S_AXI_WVALID

S_AXI_WREADY

S_AXI_BRESP

S_AXI_BVALID

S_AXI_BREADY

4

32

4

S_AXI_ARADDR

S_AXI_ARVALID

S_AXI_ARREADY

S_AXI_RDATA

S_AXI_RRESP

S_AXI_RVALID

S_AXI_RREADY

2

4

32

S_AXI_ACLK

Slave
Register 0

E E

sl
v
_
re

g
_
w

re
n

a
x
i_

a
w

a
d
d
r(

3
..

2
) sl

v
_
re

g
_
rd

e
n

a
x
i_

a
ra

d
d
r(

3
..

2
)

01

10

Pipelined Divider

v

E

A

B

Q

R

FSM

slv_reg_wren

S1

1

FSM @ S_AXI_ACLK

S_AXI_ARESETN=0

slv _reg_wren

E 1

0

S2

0

slv _reg_wren
1

Slave Register 1 = 01
Slave Register 2 = 10

S_AXI_ARESETN

E

0

33

E

N=M=16

divpip_ip.vhd

resetn

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

4 Daniel Llamocca

PIPELINED 2D CONVOLUTION KERNEL: CUSTOM PERIPHERAL FOR AXI4-LITE

CONSIDERATIONS
▪ We will use the Pipelined 2D Convolution Kernel with 𝐵 = 𝐶 = 8,𝑁 = 3,𝑅𝐸𝑃 = "𝑈𝑁𝑆𝐼𝐺𝑁𝐸𝐷".
▪ List of files to use:

✓ myconv2_v1_0.vhd: AXI4-Lite Peripheral (top file). This is the same file generated by Vivado.

✓ myconv2_v1_0_S00_AXI.vhd: AXI4-Lite Interface description. This file is generated by Vivado, but it has been edited to

include the 2D Convolution Kernel IP.
✓ myconv2_ip.vhd: 2D Convolution Kernel IP with some interfacing (FSM) to the Slave Registers for AXI4-Lite Interfacing.

In addition, here the input matrix H of the 2D Convolution Kernel is fixed to:

[
0𝑥02 0𝑥0𝐵 0𝑥02
0𝑥05 0𝑥0𝐸 0𝑥05
0𝑥02 0𝑥0𝐵 0𝑥02

]

✓ myconv2.vhd: Top file of the 2D Convolution Kernel IP.
✓ adder_tree.vhd, my_pashiftreg.vhd, my_rege.vhd, my_addsub.vhd, fulladd.vhd, dffe.vhd,

pack_xtras.vhd: Files that make up the Pipelined 2D Convolution Kernel.

✓ tb_myconv2_lite.vhd: Testbench for AXI4-Lite peripheral. This is very useful as it emulates the AXI signals resulting

from the execution of the software in the PS. This allows us to fix peripheral errors.
▪ The Pipelined 2D Convolution Kernel requires 4 Slave Registers for processing data (3 for writing data, 1 for reading data).

IP GENERATION
▪ Create a new project in Vivado: myaxiliteconv2.

✓ Make sure the default language is VHDL, so that the system wrapper is created in VHDL

✓ At Default Part, go to Boards, and select the Zybo (or Zybo Z7-10) Board.

▪ From the menu bar, select Tools → Create and Package New IP.
✓ Create a new AXI4 Peripheral. Name: myconv2. Location /ip_repo.

Peripheral Repositories tip: To add a previously-generated IP into a new project, go to: Project Settings → IP → IP

repositories and point to the associated repository folder.

✓ Add Interface: Lite, 32 bits, 4 registers.
✓ Select Edit IP. A New project appears, open it and look for the <peripheral name>_S00_AXI.vhd file (in this case it will

be myconv2_v1_0_S00_AXI.vhd). Modify the project by:

 Using only the required registers, i.e., commenting out VHDL code that specifies unused registers and instantiating
(port-map) the pixel processor IP in the file myconv2_v1_0_S00_AXI.vhd. As a shortcut, you can just replace this file

with the file myconv2_v1_0_S00_AXI.vhd file that is available for download.

 Adding the extra files to the folder /hdl in /ip_repo/myconv2_1.0 and adding these source files to the Vivado

project. * Vivado 2019.1: by default, the files will be added to the folder /src.

✓ There is no need to add ports as our peripheral does not include external I/Os.
✓ Synthesize your circuit (just to double-check everything is ok): You should’ve simulated this code in a different project.

✓ Go to Package IP – myconv2 → File Groups (Merge changes). Then Review and Package → Re-Package IP.

▪ You will return to the original Vivado Project.

S_AXI_AWADDR

S_AXI_AWVALID

S_AXI_AWREADY

S_AXI_WDATA

S_AXI_WSTRB

S_AXI_WVALID

S_AXI_WREADY

S_AXI_BRESP

S_AXI_BVALID

S_AXI_BREADY

4

32

4

S_AXI_ARADDR

S_AXI_ARVALID

S_AXI_ARREADY

S_AXI_RDATA

S_AXI_RRESP

S_AXI_RVALID

S_AXI_RREADY

2

4

32

S_AXI_ACLK

Slave
Registers

E

axi_awaddr(3..2)

Conv. Kernel

v
E

H

D F

FSM

slv_reg_wren

S_AXI_ARESETN

0

21

E

B=C=8
3x 3

Slave
Register 3

sl
v
_
re

g
_
rd

e
n

a
x
i_

a
ra

d
d
r(

3
..

2
)

=10

E

E

0

1

2

=01 =00

32

32

72

E

=1132 8

3

E

72

02 0B 02

05 0E 05

02 0B 02

S1

1

FSM at S_AXI_ACLK

S_AXI_ARESETN=0

slv _reg_wren 0

S2

0

slv _reg_wren
1

K=2 K K+1

K 0

S4

v

no

yes

1 0

E  1

S3

resetn

myconv2_ip.vhd

http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_8/myconv2.zip

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

5 Daniel Llamocca

CREATING A BLOCK DESIGN PROJECT IN VIVADO

▪ Click on Create Block Design and instantiate the Zynq PS and the AXI MYCONV2 peripheral.

▪ Click on Run Block Automation and Run Connection Automation.

▪ There is no need to add an .xdc file as our peripheral does not use external ports.

▪ Create the VHDL wrapper (Sources Window → right click on the top-level system design → Create HDL Wrapper).

▪ Synthesize, implement, and generate the bitstream.
▪ Export hardware (with bitstream) and launch SDK

SOFTWARE APPLICATION IN SDK
▪ Navigate to Xilinx Tools → Repositories, click on New and then browse to the folder \ip_repo\myconv2_1.0 and click ok.

▪ Create a new SDK application: conv2test. Then, copy the following file into the /src folder: myconv2_test.c. This file

will test three input cases:
✓ D = [A1 B2 C3

 D4 F0 E1 Expected Result: 0x00102B82

 D2 C3 B3].

✓ D = [F1 09 05

 0A C3 02 Expected Result: 0x001018FF

 A1 F0 1C].

▪ Note that the application also measures elapsed time (us) between input data is written and output data is retrieved.

